Minggu, 04 Januari 2015

yuk beljar kalkulus

Teknik Integral: Substitusi Trigonometri

Ada dua hal yang akan kita diskusikan dalam pembahasan ini. Pertama, kita akan mendiskusikan bagaimana penggunaan substitusi trigonometri dalam menyelesaikan permasalahan integral. Kedua, kita akan juga membahas penggunaan integral dalam memodelkan dan menyelesaikan permasalahan dalam kehidupan sehari-hari.
Substitusi trigonometri dapat digunakan untuk menyelesaikan integral yang memuat bentuk akar
Bentuk Akar
Tujuan dari penggunaan substitusi trigonometri adalah untuk menghilangkan akar tersebut dalam integran. Kita dapat melakukan hal ini dengan menggunakan identitas Pythagoras
Identitas Pythagoras
Sebagai contoh, jika a > 0, misalkan u = a sin θ, dengan –π/2 < θ < π/2. Maka
Contoh
Perhatikan bahwa cos θ ≥ 0, karena –π/2 < θ < π/2.
Substitusi Trigonometri
  1. Untuk integral yang memuat √(a² – u²), misalkan u = a sin θ. Maka, didapatkan √(a² – u²) = a cos θ, di mana –π/2 < θ < π/2.
    Segitiga 1
  2. Untuk integral yang memuat √(a² + u²), misalkan u = a tan θ.
    Maka, √(a² + u²) = a sec θ, dengan –π/2 < θ < π/2.
    Segitiga 2
  3. Untuk integral yang memuat √(u² – a²), misalkan u = a sec θ. Maka,
    Substitusi Trigonometri 3
    Segitiga 3
Catatan Batasan dari θ memastikan bahwa fungsi pada substitusi tersebut merupakan fungsi satu-satu. Faktanya, batasan tersebut merupakan interval yang sama di mana arcsinus, arctangen, dan arcsecan didefinisikan.

Integral Trigonometri

Pada pembahasan ini kita akan berlatih untuk menyelesaikan integral-integral yang memiliki bentuk
Bentuk Integral
di mana m dan n adalah bilangan bulat positif. Untuk menemukan antiturunan dari bentuk-bentuk tersebut, pecahlah bentuk tersebut menjadi kombinasi dari integral trigonometri sedemikian sehingga kita dapat menggunakan Aturan Perpangkatan.
Sebagai contoh, kita dapat menyelesaikan integral berikut dengan memisalkan u = sin x. Sehingga, du = cos x dx dan diperoleh,
Contoh
Untuk menyelesaikan integral-integral trigonometri, gunakan identitas-identitas berikut agar kita dapat menggunakan Aturan Perpangkatan.
Identitas sin-cos

Panduan untuk Menyelesaikan Integral yang Memuat Perpangkatan Sinus dan Cosinus
  1. Jika pangkat dari sinus adalah bilangan ganjil dan positif, simpan satu faktor sinus tersebut dan ubahlah faktor sisanya menjadi cosinus. Kemudian, ekspansi dan integralkan.
    Panduan sin-cos 1
  2. Jika pangkat dari cosinus adalah bilangan ganjil dan positif, simpan satu faktor cosinus tersebut dan ubahlah faktor sisanya menjadi sinus. Kemudian, ekspansi dan integralkan.
    Panduan sin-cos 2
  3. Jika pangkat dari sinus dan cosinus keduanya genap dan tidak negatif, gunakan secara berulang identitas berikut,
    Panduan sin-cos 3
    untuk mengubah integran menjadi perpangkatan ganjil dari cosinus. Kemudian lanjutkan sesuai panduan nomor 2.

Contoh 1: Pangkat dari Sinus Ganjil dan Positif
Tentukan,
Contoh 1
Pembahasan Karena kita berharap untuk menggunakan Aturan Perpangkatan dengan u= cos x, maka simpan satu faktor sinus untuk membentuk du dan ubah faktor-faktor sinus sisanya menjadi cosinus.
Contoh 1 Pembahasan
Pada Contoh 1 di atas, pangkat m dan n keduanya merupakan bilangan bulat positif. Bagaimanapun, teknik yang sama dapat digunakan selama salah satu dari m atau nmerupakan bilangan ganjil dan positif. Sebagai contoh, pada contoh selanjutnya pangkat dari cosinusnya 3, sedangkan pangkat dari sinusnya –1/2.
Contoh 2: Pangkat dari Cosinus Ganjil dan Positif
Tentukan,
Contoh 2
Pembahasan Karena kita akan menggunakan Aturan Perpangkatan dengan u = sin x, maka simpan satu faktor cosinus untuk membentuk du dan ubah faktor-faktor cosinus sisanya menjadi sinus.
Contoh 2 Pembahasan
Gambar di bawah ini menunjukkan daerah yang luasnya direpresentasikan oleh integral tersebut.
Contoh 2 Grafik
Pada pembahasan ini kita akan berlatih menemukan antiturunan dengan menggunakan integral parsial. Selain itu, di bagian akhir pembahasan ini, kita juga akan menggunakan metode tabulasi dalam melakukan proses integral parsial tersebut. Teknik integral parsial dapat diterapkan dalam berbagai macam fungsi, dan secara khusus teknik tersebut sangat berguna ketika dijumpai integran yang melibatkan perkalian fungsi-fungsi aljabar dan transendental. Sebagai contoh, integral parsial akan sangat berfungsi dengan baik untuk menyelesaikan,
Contoh Integral
Integral parsial didasarkan pada rumus turunan dari perkalian dua fungsi.
Turunan Perkalian
di mana u dan v adalah fungsi-fungsi yang terdiferensialkan dalam x. Jika u’ dan v’ kontinu, kita dapat mengintegralkan kedua ruas dari persamaan di atas dan memperoleh
Asal Integral Parsial
Dengan menulis kembali persamaan di atas, diperoleh teorema berikut.
Teorema 1: Integral ParsialJika u dan v adalah fungsi-fungsi dalam x yang kontinu dan terdiferensialkan, maka
Teorema Integral Parsial
Rumus integral parsial ini menyatakan integral aslinya ke dalam bentuk integral yang lain. Berdasarkan pemilihan u dan dv, akan lebih mudah menyelesaikan bentuk integral yang kedua daripada bentuk aslinya. Karena pemilihan u dan dv sangatlah krusial dalam proses integral parsial, berikut ini panduan dalam memilih u dan dv.
Integral Parsial Art

Panduan dalam Proses Integral Parsial
  1. Cobalah untuk memisalkan dv sebagai bagian yang sangat rumit dari integran yang sesuai dengan aturan dasar integral. Sehingga u merupakan faktor lainnya dari integran.
  2. Cobalah untuk memisalkan u sebagai bagian dari integran yang turunannya lebih sederhana dari u. Selanjutnya dv merupakan faktor integral lainnya.
Perhatikan bahwa dv selalu memuat dx dari integran aslinya.

Untuk lebih memahami bagaimana menyelesaikan permasalahan integral dengan menggunakan metode integral parsial, perhatikan beberapa contoh berikut.
Contoh 1: Integral Parsial
Tentukan,
Contoh 1
Pembahasan Untuk menerapkan integral parsial, kita perlu untuk menuliskan integral tersebut ke dalam
Contoh 1 Bentuk Parsial
Terdapat beberapa cara untuk melakukan hal tersebut, yaitu
Contoh 1 Kemungkinan
Panduan dalam pemilihan u dan dv sebelumnya menyarankan kita untuk memilih pilihan pertama karena turunan dari u = x lebih sederhana dari x, dan dv = ex merupakan bagian yang paling rumit dari integran yang sesuai dengan aturan dasar integral.
Contoh 1 u dv
Sekarang, dengan integral parsial akan dihasilkan
Contoh 1 Integrasi
Untuk memeriksa hasil pengintegralan ini, kita dapat menurunkan hasil tersebut untuk mendapatkan integran aslinya.
Catatan Pada contoh 1 di atas kita tidak perlu menuliskan konstanta ketika menyelesaikan
Contoh 1 Keterangan
Untuk mengilustrasikan hal ini, cobalah mengganti v = ex dengan v = ex + C1 kemudian terapkan proses integral parsial untuk melihat bahwa kamu akan mendapatkan hasil yang sama.

Aturan L’Hôpital

Aturan L’Hôpital menyatakan bahwa dalam kondisi tertentu, limit dari pembagianf(x)/g(x) dapat ditentukan dengan menggunakan limit pembagian dari turunan-turunannya, yaitu
Pembagian Turunan
Untuk membuktikan teorema ini, digunakan Teorema Nilai Rata-rata yang Diperluas, seperti berikut.
TEOREMA NILAI RATA-RATA YANG DIPERLUASJika f dan g memiliki turunan pada interval terbuka (a, b) dan kontinu pada [a, b] sedemikian sehingga g’(x) ≠ 0 untuk setiap x di dalam (a, b), maka ada titik c di (a, b) sedemikian sehingga,
Teorema Nilai Rata-rata
Bukti Kita dapat menganggap bahwa g(a) ≠ g(b), karena jika tidak, menurut Teorema Rolle, akan mengakibatkan g’(x) = 0 untuk suatu x di (ab). Sekarang, didefinisikan h(x) sebagai berikut.
H(x)
Maka
H(a)
dan
H(b)
dan dengan menggunakan Teorema Rolle, ada titik c di (ab) sedemikian sehingga
H'(c)
yang menyebabkan bahwa,
Terbukti
Setelah membuktikan Teorema Nilai Rata-rata yang Diperluas, sekarang perhatikan Teorema L’Hôpital berikut.
ATURAN L’HÔPITALMisalkan f dan g adalah fungsi-fungsi yang memiliki turunan pada interval terbuka (a, b) yang memuat c, kecual pada c itu sendiri. Anggap g(x) ≠ 0 untuk setiap x di (a, b), kecuali pada c itu sendiri. Jika limit dari f(x)/g(x) untuk x mendekati c menghasilkan bentuk tidak tentu 0/0, maka
Aturan L'Hopital
apabila limit di ruas kanan ada (atau tak hingga). Hasil ini juga dapat diterapkan jika limit f(x)/g(x) untuk x mendekati c menghasilkan bentuk-bentuk tak tentu ∞/∞, (–∞)/∞, ∞/(–∞), dan (–∞)/(–∞).
Seperti yang telah disinggung sebelumnya, Aturan L’Hôpital tersebut akan dibuktikan dengan menggunakan Teorema Nilai Rata-rata yang Diperluas. Karena banyak kasus dalam aturan ini, maka pada pembahasan ini hanya akan dibuktikan untuk satu kasus saja. Untuk kasus yang lain diserahkan kepada pembaca sebagai latihan.
Bukti Perhatikan satu kasus untuk,
Satu Kasus
Selanjutnya definisikan fungsi baru sebagai berikut.
F(x) dan G(x)
Untuk setiap xc < x < bF dan G memiliki turunan pada (cb] dan kontinu pada [cb]. Sehingga, Teorema Nilai Rata-rata yang Diperluas dapat diterapkan untuk menyimpulkan bahwa ada bilangan z di (cx) sedemikian sehingga
Pembagian Turunan F dan G
Akhirnya, dengan memisalkan x mendekati c dari kanan, x → c+, didapatkan z → c+karena c < z < x, dan
Terbukti 2
Catatan Kesalahan kadang-kadang dilakukan dengan menggunakan Aturan Turunan pada Pembagian f(x)/g(x) dalam menerapkan Aturan L’Hôpital ini. Pastikan bahwa aturan ini memuat f ’(x)/g’(x), bukan turunan dari f(x)/g(x). Selanjutnya perhatikan beberapa contoh berikut.
Contoh 1: Bentuk Tak Tentu 0/0
Tentukan nilai limit dari (e2x – 1)/x untuk x mendekati 0.
Pembahasan Karena dengan menggunakan substitusi langsung menghasilkan bentuk tak tentu 0/0,
Bentuk Tak Tentu
sehingga dapat diterapkan Aturan L’Hôpital, seperti yang ditunjukkan di bawah ini.
Contoh Soal 1
Contoh 2: Penerapan Aturan L’Hôpital Lebih dari Satu Kali
Tentukan limit x2/ex untuk x mendekati negatif tak hingga.
Pembahasan Karena dengan substitusi langsung akan menghasilkan bentuk tak tentu ∞/∞, maka gunakan Aturan L’Hôpital.
Contoh Soal 2 I
Limit ini masih menghasilkan bentuk tak tentu (–∞)/(–∞), sehingga Aturan L’Hôpital dapat diterapkan kembali.
Contoh Soal 2 II